1. Course Title:

Infrastructure Planning and Management for Smart Cities

2. Course Objectives:

Objective 1	To provide a comprehensive understanding of smart city concepts, including
	sustainable infrastructure, green buildings, intelligent transport systems, and ICT
	integration, in line with national and global urban development goals.
Objective 2	To equip participants with computational thinking and programming skills using
5	functional and imperative paradigms, enabling them to solve engineering problems
	relevant to smart city systems.
Objective 3	To introduce the principles of infrastructure planning and management, including cost
	estimation, resource allocation, risk analysis, and scheduling, with hands-on exposure
	to industry-standard project management software.
Objective 4	To develop participants' understanding of data science tools and statistical methods,
_	empowering them to analyze urban infrastructure data and make data-driven decisions
	for smart city development.
Objective 5	To foster interdisciplinary thinking by integrating civil engineering, data science, and
-	computing knowledge, supporting holistic planning and innovation in smart city
	infrastructure projects.
Objective 6	To promote experiential learning through project-based work, encouraging participants
-	to design, analyze, and present smart infrastructure solutions that address real-world
	urban challenges.

3. Rationale for the course

The infrastructure sector is transforming through digital technologies, data analytics, and the increasing emphasis on sustainability and smart urban development. Initiatives like India's Smart Cities Mission, global climate commitments, and the growing integration of ICT (Information and Communication Technology) in civil infrastructure highlight the urgent need to align academic instruction with these evolving industry requirements.

Despite the technological advancements and changing demands in the construction and urban development sectors, a significant gap exists in the current curriculum of many civil engineering programs. Most faculty members are well-versed in traditional infrastructure topics but lack formal training in computational thinking, programming, data science, and smart city technologies—skills now essential for students and future engineers.

This course is designed to equip civil engineering faculty members with interdisciplinary knowledge and pedagogical tools needed to modernize their teaching practices and enhance student learning. The course bridges multiple knowledge domains by integrating:

- a. Programming and problem-solving using functional and object-oriented paradigms to introduce algorithmic thinking.
- b. Data science applications in infrastructure, including statistical analysis, regression, classification, and clustering, to address real-world problems in urban systems.
- c. Infrastructure planning and project management, including hands-on training in tools like MS Project and Primavera, which are widely used in the industry.
- d. Smart city concepts, such as intelligent transportation, green buildings, renewable energy integration, and urban sustainability, are often missing or superficially covered in existing syllabi.

By completing this course, participants will be better prepared to teach students in a more contemporary and practical manner, integrating theory with application and exposing them to industry-relevant tools and case studies. The course also encourages a paradigm shift in civil engineering education, moving beyond conventional design to data-informed, sustainable, and digitally enabled urban infrastructure development.

4. Course Structure:

Course	Contents
CS Core 1	Basic model of computation, Notion of Algorithms, Principle of Mathematical
CD COIC I	Induction
Introduction	Basics of functional programming, notion of types
to Problem	Iterative versus recursive style
Solving and	Correctness and efficiency issues in programming, time, and space measures
Programming	Basics of imperative style programming
i ogranning	Assertions and loop invariants
	Top-down design and examples of step-wise refinement
	Programming using structures, introduction to encapsulation, and object-oriented
	programming
Domain Core	Definitions of infrastructure
	Infrastructure planning phases
Infrastructure	Scheduling and management of planning activities
Planning and	Project Cost Management
Management	Resource planning, leveling, and allocation
8	Cost estimating and control
	Earned value method
	Infrastructure financing
	Quality and safety in infrastructure
	Infrastructure risk management
	Life-cycle Costing
	Value Engineering
	Hands-on practice on project management software: MS Project and Primavera
CS Core 2	Course Philosophy and Introduction to R
	Linear algebra for data science
Data Science	Algebraic view - vectors, matrices, a product of matrix & vector, rank, null space,
for Engineers	solution of an over-determined set of equations, and pseudo-inverse
	Geometric view - vectors, distance, projections, eigenvalue decomposition
	Statistics (descriptive statistics, notion of probability, distributions, mean,
	variance, covariance, covariance matrix, understanding univariate and multivariate
	normal distributions, introduction to hypothesis testing, confidence interval for
	estimates)
	Optimization
	Typology of data science problems and a solution framework
	Simple linear regression and verifying assumptions used in linear regression
	Multivariate linear regression, model assessment, assessing importance of
	different variables, subset selection
	Classification using logistic regression
	Classification using kNN and k-means clustering
Domain	Introduction to Smart Cities
specialized	Definition, concept, need, and importance of smart cities
	Features and characteristics of a smart city
	Government of India: India's "100 Smart Cities" Policy and Mission

	Case Studies of Smart City
	Infrastructure Management in India, its Challenges and Objectives
	Sustainable building housing
	Introduction to Green Buildings, features of green building rating systems in
	India: LEED, GRIHA, energy saving system, solar energy for smart city
	Intelligent transport systems smart vehicles and fuels, traffic safety management,
D · · ·	and mobility services
Project	Optimizing Urban Transport Flow Using Data-Driven Clustering
	You are hired as a data analyst for a city municipality to improve public
	transportation. Using traffic flow data (vehicle count, travel time, peak hours) from
	multiple intersections in a smart city zone, identify congestion hotspots and cluster
	them using k-means to suggest optimal routes or locations for traffic lights or public
	transit hubs.
	Infrastructure Planning for a Desilient Smort Sub City
	Infrastructure Planning for a Resilient Smart Sub-City
	Design a basic infrastructure plan for a new sub-city area to be developed under the Smart Cities Mission. The plan should include scheduling infrastructure
	components (roads, water, energy, housing), estimation of project cost, and resource
	allocation using the Primavera/MS Project. Consider sustainable alternatives (green
	buildings, solar power) and apply risk management principles.
	bundings, solar power) and appry fisk management principles.
	Statistical Analysis of Urban Water Usage Patterns
	Analyze domestic water consumption data across different housing types in a
	smart city. Apply statistical methods (mean, variance, distribution fitting,
	hypothesis testing) to determine factors influencing usage and propose smart water
	management recommendations.
	Automating Task Allocation for Civil Infrastructure Projects
	Develop a simple program using object-oriented principles to automate task
	allocation and scheduling in a small construction project. The program should take
	input as team capacity, task durations, and dependencies, and generate a schedule
	that minimizes overall project time.
	Life Cycle Cost Comparison of Conventional vs. Green Buildings
	Compare the life-cycle cost of a conventional office building with that of a green
	building using LEED/GRIHA standards. Include initial construction cost,
	operation and maintenance costs, energy consumption, and lifespan. Use basic
	cost modeling and optimization tools to identify the more cost-effective option in
	the long term.

5. Learning Outcomes

Demonstrate proficiency in computational thinking and programming skills (functional and imperative styles) to solve basic to intermediate problems relevant to civil and infrastructure engineering.

Apply data science techniques—including statistical analysis, regression, and clustering—to analyze and interpret urban infrastructure data for informed decision-making in smart city contexts.

Develop infrastructure planning strategies using project scheduling, cost estimation, resource allocation, and risk management concepts with hands-on experience in tools like MS Project and Primavera.

Critically evaluate the components of smart city development, including green buildings, intelligent transport systems, and sustainable energy solutions, with an understanding of national policies and global trends.

Design effective instructional strategies and course content to teach civil engineering students about smart infrastructure systems and emerging technologies in a more integrated, application-oriented manner.

6. Infrastructure and Resources available:

The relevant studios for teaching theoretical concepts, labs for hands-on software practices, and rooms for tutorials are available in the institute. Hostel accommodation is also available.

7. Expected Outcomes of the Course

- a. Upon successfully completing the course, it is expected that a cohort of 30–50 civil engineering faculty members from various institutes will have significantly enhanced their understanding of smart city infrastructure, computational tools, and data-driven approaches in urban planning.
- b. Participants will receive a certificate of completion, demonstrating their competency in integrating modern technologies such as programming, data science, and project management software into civil engineering education.
- c. The course will equip them with the necessary skills to develop and deliver advanced, interdisciplinary content in their respective institutions, thereby contributing to curriculum modernization and capacity building.
- d. Additionally, the participants will be capable of guiding students through practical, projectbased learning in areas such as smart infrastructure, sustainability, and intelligent urban systems—aligning engineering education more closely with industry needs and national missions like the Smart Cities Mission.